Calorimeter R&D for COMET

Akira SATO
Osaka University
23-34 Jun. 2009
COMET-mu2e joint workshop @ LBNL

Contents

- Overview
- R&Ds
 - Crystal
 - Rad. hard test of Zr doped GSO(Ce)
 - Optical simulation using Geant4
 - Beamtests
 - MPPC

Calorimeter

- Crystal array at the end of solenoid channel (size Φ1m, 11X₀)
- Requirements
 - Energy resolution : σ < 5% at 100 MeV
 - Trigger Rate : < 5-10 kHz
 - Spacial resolution : < 1.5 cm
 - Fast response : < 100ns
 - Operate in a vacuum with 1 T magnetic field
- Candidates of crystal
 - GSO(Ce): enough light yield and fast response, but relatively expensive. difficult to get lager crystals.
 - LYSO: enough light yield and fast response, but relatively expensive.
 - PWO: less expensive, faster response. Large crystal is available. But, poor light yield. Needs cooling to increase light yield.
- Candidates of photon detector
 - MPPC: high gain. Needs more R&D.
 - APD : established. low gain.

R&D items

- Crystal
 - check properties
- MC simulation
 - including photon tracking in the crystal and light guide
 - compare results of MC with that of from beam tests
 - understand energy resolution
 - optimize calorimeter
- Photon detector
 - PMT / APD / MPPC
- Readout electronics

Crystals

Table 28.4: Properties of several inorganic crystal scintillators. Most of the notation is defined in Sec. 6 of this *Review*.

Paramete	er: ρ	MP	X_0^*	R_M^*	dE/dx	λ_I^*	$ au_{ m decay}$	$\lambda_{ m max}$	n^{\natural}			$d({\rm LY})/dT$
Units:	g/cm ³	$^{\circ}\mathrm{C}$	cm	cm	MeV/cm	cm	ns	nm		output [†]	scopic?	%/°C [‡]
NaI(Tl)	3.67	651	2.59	4.13	4.8	42.9	230	410	1.85	100	yes	-0.2
BGO	7.13	1050	1.12	2.23	9.0	22.8	300	480	2.15	21	no	-0.9
BaF_2	4.89	1280	2.03	3.10	6.6	30.7	630^s	300^s	1.50	36^s	no	-1.3^{s}
							0.9^f	220^f		3.4^f		$\sim 0^f$
CsI(Tl)	4.51	621	1.86	3.57	5.6	39.3	1300	560	1.79	165	slight	0.3
CsI(pure)	4.51	621	1.86	3.57	5.6	39.3	35^s	420^s	1.95	3.6^s	slight	-1.3
							6^f	310^f		1.1^f		
$PbWO_4$	8.3	1123	0.89	2.00	10.2	20.7	30^{s}	425^s	2.20	0.083^{s}	no	-2.7
							10^f	420^f		0.29^{f}		
LSO(Ce)	7.40	2050	1.14	2.07	9.6	20.9	40	420	1.82	83	no	-0.2
GSO(Ce)	6.71	1950	1.38	2.23	8.9	22.2	600^{s}	430	1.85	3^s	no	-0.1
							56^f			30^f		

We have GSO(Ce) and LYSO (from JINR) now. PWO would be delivered. Properties of GSO(Ce) were studied at Osaka U.

Zr doped GSO(Ce) by Hitachi material Co.

Zr doped GSO(Ce) has a higher transmittance. But there was no data about radiation hardness for that. We measured it.

Radiation hardness of GSO(Ce) and Zr-GSO(Ce)

- GSO(Ce) has high radiation hardness as expected.
- Zr doped GSO(Ce), which has higher light yield, has less hardness.

Simulation study

- Ray tracing in crystals using geant4 with Optical Photon Processes
 - Optimization of crystals and photon detectors.
 - Estimate the energy resolution and its components.

Beam test with GSO(Ce) crystal : Dec. 2007

- check the MC results
- GSO(Ce) with PMT
 - 150 MeV e- beam
 - from REFER, Hiroshima-U.

Beam test with GSO(Ce) crystal : Dec. 2007

Beam test with GSO(Ce) crystal: Dec. 2007

Good agreements with the simulation results

Estimation of σ_E with the MC

- After optical parameters in the MC tuned to fit the result of the beamtest result.
- Energy resolution at 105 MeV electrons was estimated for COMET calorimeter using the MC code.
- Crystals
 - stacked GSO
 - bulk GSO
 - bulk PWO
 - bulk LYSO

Energy reso. with large photon detectors by MC

Photon det. covers full size of crystal. (ultimate case!)

	stacked GSO	bulk GSO	bulk PWO
σ _E /E(%)	5.32 ± 0.08	4.02 ± 0.04	2.68 ± 0.03

One graduate student of Osaka Univ. works on this study for his Master thesis.

We will get a lot of result of the MC:

* Dependency of energy resolution on Crystal, P.D., Light guide, and their size

Candidates of Photon Detector

	PMT	APD	MPPC
Gain	~10 ⁶	~10²	10 ⁵ ~10 ⁶
Photon Detection Efficiency	0.1~0.2	0.7~0.8	0.2-0.5
Response	~40ps		~110ps
Bias voltage	~2000V	300~500V	30~75V
Size	large	25~100mm ²	1~9mm ²
B field	Sensitive	No influence	No influence
Cost	high	700USD for 100mm ²	250USD for 9mm ²
Dynamic range	Good		poor linearity
Stability	Good		
Noise	Quiet		Noisy(small p.h.)

We study the MPPS for COMET calorimeter with support from KEK photon detector group from 2008.

Linearity: MPPC 3x3 mm² (25um pixel) HPK

MPPC 1x1 mm² (400pixels) HPK

2nd Beam Test 26 Nov. - 9 Dec., 2008

Preliminary results

*Study of light guide effect

* APD readout

* LYSO with

PMT /

MPPC 1 mm²/

MPPC 9 mm²

Preliminary results

LYSO ($6cm\phi \times 20cm$) without the light guide

20

MC to optimize the system

other candidates

Small MPPCs connected to a segment of the crystal directly

Small MPPCs connected to a segment of the crystal with LG.

Summary

- Calorimeter R&D is one of the ongoing studies of COMET.
- Need to select and optimize
 - Crystal : GSO, LYSO, PWO
 - Photon Det. : MPPC, APD
- R&Ds
 - Crystal property measurement : GSO done, LYSO soon
 - Beam test with 150MeV electrons: carried out twice
 - MC with geant4 : developed -> results by the end of March
 - MPPC/APD readout : underway 2008-2009
 - My hope 2009- (depends on the budget)
 - Beamtest with PWO/LYSO/GSO and MPPC/APD
 - prototypes of optimized geom.
 - develop readout and frontend electronics

Resolution and Trigger Rate

カロリメータの種類	運動量分解能 σ(MeV/c)	DIO による単位時間トリガー数 (Hz)
積層型 Zr-GSO(Ce)	5.72±0.08	33 ± 1
Zr-GSO(Ce)	4.02±0.04	17 ± 1
PWO	2.81 ± 0.03	2.1 ± 0.1